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Abstract. We present two sets of lessons on the history of mathematics de-
signed for prospective teachers: (1) Euclid’s Theory of Area, and (2) Eu-
clid’s Theory of Similar Figures. They aim to encourage students to think of
mathematics by way of analysis of historical texts. Their historical content
includes Euclid’s Elements, Books I, II, and VI. The mathematical meaning
of the discussed propositions is simple enough that we can focus on specific
methodological questions, such as (a) what makes a set of propositions a the-
ory, (b) what are the specific objectives of the discussed theories, (c) what
are their common features.

In spite of many years’ experience in teaching Euclid’s geometry com-
bined with methodological investigations, we cannot offer any empirical
findings on how these lectures have affected the students’ views on what
a mathematical theory is. Therefore, we can only speculate on the hypothet-
ical impact of these lectures on students.

1. Introduction

Scholars in the foundations of mathematics share the view that a theory is
a set of sentences that follow from a group of axioms. Ironically, they present
Euclid’s Elements as a model historical example of such a system (see Hilbert,
1922; Barwise, 1999). This methodology focuses on axioms which are considered
to be the very first mathematical truths, while propositons are viewed in terms of
eintailment alone. Consequently, it does not provide any means to decide whether
one proposition is more important than another, or what a theory as a whole is for.
Both school and academic textbooks mimic that attitude, while at the same time
not providing a full set of axioms, e.g. textbooks do not usually consider all axioms
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for real numbers, except for course books in mathematical logic or model theory.
As a result, students implicitly adopt a view that mathematics is but an endless
chain of theorems governed by logical consequence with no beginning (axioms)
and no actual aims.

Contrarily, in mathematical practice, sentences which are grouped in a theory
such as calculus, algebra, or more specific ones like Fourier series, form a hierar-
chical structure; sometimes the unique role of a theorem is even mirrored by its
name, e.g. the fundamental theorem of calculus, or the fundamental theorem of al-
gebra. Hence, in our view, a theory is a group of axioms, definitions, and theorems
designed to solve a problem; in addition, these theorems share the same method-
ology characterized in terms of mathematical tricks. Throughout our lessons, we
develop a methodology that seeks to adhere to mathematical practice rather than
the axiomatic philosophy.

In teachers’ training, elementary geometry is a way of introducing the method-
ology of mathematics to students, specifically theorem proving. While the mathe-
matics used in the course is simple, a lecturer, i.e. a teacher of prospective teachers,
can focus on the relationship between the premises and conclusions; he can point
out references to the axioms and previously proved theorems; he can also highlight
the use of undefined terms, and explain the difference between direct and indirect
proof. By and large, Euclidean geometry is presented from the perspective of the
20th century philosophy of mathematics as a set of sentences that follow from
axioms.

We offer an alternative view on mathematical theory, namely: Theory is a hier-
archical structure of theorems designed to solve a specific problem and character-
ized by having the same methodology. We accept the general idea of the deductive
nature of mathematics, however, in this context, by methodology we mean a set of
so-called mathematical tricks irreducible to logical consequence. To illustrate this
new perspective, in sections 3 and 4, we present two theories identified in Euclid’s
Elements: Theory of Area and Theory of Similar Figures. We present them as hier-
archical systems crowned by proposition II.14 (i.e. Elements, Book II, proposition
14) in the case of the former theory, and VI.31 in the case of the later. We also
reveal a technique of triangulation, and show that it is a common feature of these
theories. Indeed, the triangulation enables to reduce problems concerning polygons
to triangles. Nevertheless, this technique is covered neither by modern axiomatic
analyses of elementary geometry nor by the mathematics curriculum. In the sec-
tion 5, we offer diagrams representing the triangulation method as it relates to
the Pythagorean theorem. We show that depending on whether the triangulation
is applied within the Theory of Area or the Theory of Similar Figures, it gives
different proofs of the Pythagorean theorem, namely I.47 and VI.31 respectively.
In section 6, we discuss some routine methodological and metamathematical is-
sues such as relationship between concepts of equal areas, the role of Archimedean
axiom in the deductive structure of discussed theories, and alleged generalizations
of the Pythagorean theorem. In this way, we show how starting with elementary
geometry one can introduce topics of modern methodology of mathematics.
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2. Geometry without numbers

The ancient Greeks developed geometry without real numbers, resulting in lack of
number representation for length of line segment, area of figure, volume of solid, or
measure of angle1. Nevertheless, the Greeks created their own techniques to deal
with geometric objects themselves, mainly the Theory of Area and the Theory of
Similar Figures. Therefore, to study Euclid’s Elements in terms of ancient Greek
mathematics, one has to put away the modern techniques relying on the facts
that line segments have lengths represented by real numbers, triangles have areas
calculated by the formula 1

2ah or 1
2ab sinα, etc. Generally, within the Theory

of Area, a triangle is related to another figure, e.g. to a square, rather than to
a number; within the theory of Similar Figures, e.g. similar triangles, T1, T2 are
related to one another by proportion T1 : T2 :: a : b, where a, b are line segments.

In what follows, we present a simplified, non-historian-friendly version of Eu-
clid’s geometry that swings in-between ancient notions and its modern counter-
parts. Note, however, that usually while replacing a triangle by its area is almost
unnoticeable, the interpretation of a proportion like a : b :: c : d as an equality of
fractions (of real numbers) a

b = c
d makes a crucial difference. Although Euclid’s ra-

tio is defined in book V, it acquires a mathematical meaning only as a component
of proportion. Unlike the fractions, ratios are not subject to operations of addition
and multiplication. To give an example, in the arithmetic of fractions, a

b multi-
plied by b

c gives a
c . In the Elements, proposition V.22 boils to the effect that if

a
b = d

e and b
c = e

f , then
a
c = d

f . Now, even if ratio a
c is interpreted as the result

of multiplication, it still has to be a part of the proportion a : c :: d : f . Conse-
quently, in the Greeks mathematics, it was not an easy task to formulate a relation
between similar figures, while in modern mathematics, it is a simple statement:
(areas of) similar figures are to one another as the square of the similarity scale.
In Greek mathematics, “the similarity scale” was represented by the proportion
of corresponding sides of similar figures, nevertheless the square of “the similarity
scale” had to be represented by a very intricate proportion (see Elements, VI.19
or section 4 below). Therefore, our simplifications concern notations and symbolic
representations, rather than techniques of Greek mathematics.

Although we represent some proportions by equalities of fractions, we are
aware of the constrains of the Greek theory, specifically that proportions can not
be transformed as easily as our modern fractions. Moreover, while arithemtic of
fractions follows from the axioms of ordered field, “arithemtic of rations” is de-
veloped in the Elements book V. As a result, e.g. the simple fact, if a

c = b
c , then

a = b, obtains in any field, whether it is Archimedean or non-Archimedean field,
while its ancient counterpart covered by the proposition V.9, if a : c :: b : c, then
a = b, depends on the Archimedean axiom.

1We recommand O’Leary,(2010), ch. 5) as a general overview of Euclid’s Elements, still it
covers neither the technique of triangulation nor the proportion theory.
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3. Euclid’s Theory of Area

Euclid’s Theory of Area is a set of propositions and constructions which allow to
transform a polygon (in Euclid’s words: area, figure, or form) A, into a square S.
The equality A = S is founded on the Common Notions axioms (abbreviated as
CN) and straightedge and compass constructions as characterized in Postulates
1 to 3. Here are the relevant Common Notions: 1. Things equal to the same thing
are also equal to one another. 2. And if equal things are added to equal things then
the wholes are equal. 3. And if equal things are subtracted from equal things then
the remainders are equal. 4. And things coinciding with one another are equal to
one another.2

The theory of area starts with proposition I.35 stating the equality of paral-
lelograms ADCB and EFCB which are on the same base and between the same
parallels, i.e. with the same height (see Figure 1, upper left diagram). In propo-
sitions I.1 through I.34, the equality of figures means congruence. Still, in I.35,
Euclid implicitly adopts another meaning of equality, namely, he introduces the
equality of non-congruent figures. The proof of I.35 proceeds as follows: Triangles
AEB, DFC are congruent, AEB ≡ DFC. When triangle DEG is subtracted from
each of them, the remainders ADGB and EFCG are equal by CN3; equal in a
new sense, which we represent by the formula ADGB = EFCG. When triangle
GCB is added to ADGB, EFCG, the whole parallelogram ABCD is equal to the
whole parallelogram EFCB by CN2.

B C

D E

G

A F

Fig. 1. Elements, I.35–38

In proposition I.36 (Figure 1, upper right diagram), Euclid shows that parallelo-
grams on congruent bases are equal, i.e. ADCB = EHGF . His argument relies
on the transitivity of equality guaranteed by CN1 and the parallelogram EHCB.

Proposition I.37 (Figure 1, lower left diagram) states that triangles on the
same base and between the same parallels are equal, ACB = DCB. The proof
of the proposition is this: since figures EACB, DFCB are equal, their halves,
i.e. triangles ACB, DCB are equal too. Proposition I.38 (Figure 1, lower right
diagram) reiterates that claim in regard to triangles on congruent bases, ACB =
DFE. Euclid’s proofs of both propositions refer to I.34 which reads as follows:

2All translations of the Elements are from (Fitzpatrick, 2007).
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a triangle is half of a parallelogram, e.g. in the case of I.38, the triangle ACB is
half of the parallelogram GACB.

Proposition I.42 provides a construction of a parallelogram equal to the given
triangle ACB. Its proof consists of finding the midpoint E on the base BC. In the
parallelogram FGCE, the angle FEC is to be congruent to the given angle D. To
put it simply, let us assume D is the right angle. Thus, by proposition I.42, a tri-
angle can be transformed into a rectangle. Note, however, that its height equals
the height of the triangle, since both the triangle ACB that is to be transformed
and the resulting rectangle FGCE are between the same parallels. In the next
proposition, Euclid tackles this problem and provides a construction that trans-
forms a given parallelogram into an equal parallelogram but with one side fixed at
will. As a result, a triangle can be transformed into an equal rectangle, while the
heights of these figures differ.

Fig. 2. Elements, I.42 (left), and I.44 (right)

On the diagram that accompanies proposition I.44 (see Figure 2 above), the trian-
gle C equals the rectangle FEBG. Now, by CN2, rectangles FEBG and BMLA
are equal, and by CN1, the triangle C is equal to the rectangle BMLA. This con-
struction is known as “applying”, for it shows how to apply a parallelogram equal
to the given triangle C to the given straight-line AB.

Fig. 3. Elements, I.45 (left), and II.14 (right)

Proposition I.45 summarizes a method we call the triangulation of polygons. Eu-
clid’s diagram presents a quadrangle ADCB, nevertheless, the method applies to
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any polygon. The idea is this: divide the polygon ADCB into adjacent triangles,
say ADB, DCB; by proposition I.41, transform each triangle into a parallelogram,
say P1, P2; let us assume P1 is simply FGHK; apply to the line GH a parallel-
ogram GLMH equal to P2. It easily follows that FLMK = ADCB. Then, the
resulting parallelogram FLMK is transformed into a rectangle. In this way, any
polygon A can be transformed into an equal rectangle. The theory of area culmi-
nates in a construction of squaring a figure introduced by proposition II.14 (see
Figure 3 above).

By the triangulation and construction in I.45, the polygon A is transformed
into the rectangle BEDC, then the construction II.14 proceeds like this: produce
the line segment BE, make EF ≡ ED; find G, the midpoint of the segment
BF ; draw the semicircle BHF with the center G and the radius GB; draw EH
perpendicular to BF . It is shown that the square on EH (in short, sqEH), equals
the rectangle BEDC.

To sum up, Euclid’s Theory of Area consists of constructions that transform
a polygon A into a square S such that the equlity A = S holds. These constructions
are included in the propositions that guarantee the equality of the relevent figures.

4. Euclid’s theory of similar figures

Euclid’s theory of similar figures builds on his theory of proportion as developed in
Book V. It culminates in proposition VI.31, stating that In right-angled triangles,
the figure on the side subtending the right-angle is equal to the similar, and sim-
ilarly described, figures on the sides surrounding the right-angle. In what follows,
we focus on a special case of VI.31, with similar pentagons drawn on the sides of
a right-angle triangle to reveal the method of triangulation.
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Fig. 4. Elements, VI.31 (left). Similar pentagons on sides of a right-angle
triangle (right)

We start with proposition VI.14 (see Figure 5 below). It could be viewed as the
ancient counterpart of the modern formulae ab sinα for the area of a parallelogram.
This proposition states, that if the proportion FB : BG :: EB : BD obtains, then
the parallelograms ECGB and FBDA are equal. Similarly, in the next proposition,
Euclid shows that if proportion BA : AE :: DA : AC obtains, then triangles BCA
and AED are equal.
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Propositions VI.14 and VI.15 are applied in the proof of VI.19 (see Figure
6 below), which encodes a truth known in modern mathematics as a relationship
between areas of similar triangles and their similarity scale. While the notion of the
similarity scale cannot be expressed in Euclid’s theory of proportion, the thesis of
proposition VI.19 seems to be a bit murky, namely, it states that Similar triangles
are to one another in the duplicate ratio of corresponding sides.

Fig. 5. Elements, VI.14 (left), VI.15 (right)

Since triangles ACB and DFE are similar, proportions AB : DE :: BC : EF and
BC : EF :: EF : BG obtain. As to the latter, point G is constructed in such a way
that the proportion BC : EF :: EF : BG obtains. To put it another way, the line
BG is the so-called third proportional between BC and EF ; proposition VI.12
introduces the construction of the third proportional. From the above proportions,
it follows that AB : DE :: EF : BG, and by VI.15, the triangle AGB equals the
triangle DFE. By VI.2, the triangle ACB is to the triangle AGB as the line BC
is to BG. Since AGB equals DFE, the proportion 4ACB : 4DFE :: BC : BG
obtains.

 
 

Figure 5: Elements, VI.14 (left), VI.15 (right) 
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Figure 6: Elements, VI.19 (left), VI.20 (right) 
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Fig. 6. Elements, VI.19 (left), VI.20 (right)

In modern exposition of the proportion theory, the similarity scale of triangles
ACB and DFE is represented by the fraction a

b , where a stands for the measure
of the line AB, and b for the measure of the line ED. Supposing that AB : DE =
BC : EF = a

b , we obtain the following “proportions”:

BC : BG = (BC : EF )(EF : BG) = a

b

a

b
.

Thus, 4ACB : 4DFE = a
b

a
b . Arguably, it represents the statement: Similar

triangles are to each other as the square of the similarity scale.
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Furthermore, since the proportion between similar triangles is established, Eu-
clid can generalize this reasult to polygons trough the triangulation. The technique
of triangulation is applied in proposition VI.20, which reads: Similar polygons can
be divided into equal numbers of similar triangles corresponding (in proportion)
to the wholes, and one polygon has to the (other) polygon a duplicate ratio with
respect to a corresponding side.

The first part of this proposition is represented by the colors on the above
diagram. In what follows, we apply a simplified version of VI.19. The similarity
scale of pentagons can be represented by equal fractions AB : GF , or BE : GL,
or CE : HL. By VI.19 we have,

4AEB : 4FLG = (BE : GL)(BE : GL),

4BEC : 4GLH = (BE : GL)(BE : GL),

4EDC : 4LKH = (CE : HL)(CE : HL).

Since CE : HL = BE : GL, by V.12 it follows from these proportions that

(4AEB+4BEC+4EDC) : (4FLG+4GLH+4LKH) = (BE : GL)(BE : GL).

Finally,
AEDCB : FLKHG = (AB : GF )(AB : GF ).

Going back to the proposition VI.31 and the pentagons represented in Figure 4,
we can show that the blue triangle described on the side AB is to the blue triangle
on the side BC as BD is to BC. In the same manner, the blue triangle on the side
AC is to the blue triangle on the side DC as DC is to BC. The same applies to
the yellow and red triangles. Thus, in the very special case of similar figures on
the sides of a right-angle triangle, the “square of similarity scale” is represented by
the ratio BD : BC and DC : BC respectively. Euclid demonstrates this relation
in proposition VI.9. Now, “adding up” the above proportions, we get

(pentagon on AB + pentagon on AC ) : (pentagon on BC ) = (BD + DC ) : BC .

Since BD +DC = BC, we finally obtain

(pentagon on AB + pentagon on AC ) = (pentagon on BC ).

5. Educational recourse to diagrams

Euclid’s Elements provide two proofs of the Pythagorean Theorem, namely I.47
and VI.31. Both of them apply the triangulation method that is represented in
Figure 7. In I.47, the square FGAB equals the rectangle BDL due to congruent
grey triangles. Thus, within the Theory of Area, triangles transfer the equality
of figures, namely: sq(FGAB) = 24FCB = 24ABD = rectangle(BLD). The
second part of the proof, that is the equality sq(AHKC) = rectangle(CEL),
proceeds in the same manner.



From Euclid’s Elements to the methodology of mathematics... [13]

 

Figure 7. Elements, I.47 (left), VI.31 (right) 

Note,  however, that while the Theory of Area is developed with no reference to the Archimedean 

axiom, i.e. definition V.4,  we can complete the proof of I.47 on a non-Archimedean plane (see 

Hilbert, 1970). The proof of VI.31 builds on the proportion theory, and as a result, on the 

Archimedean axiom, therefore it can be completed only on Archimedean planes. Nonetheless, 

VI.31 is often called a generalization of I.47. George Polya, for example,  seeks to support this 

claim with a kind of heuristic argument. In fact, his approach implicitly applies proposition VI.19 

and  depends on the Archimedean axiom (see Polya, 1957). 
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Fig. 7. Elements, I.47 (left), VI.31 (right)

In VI.31, squares on BA and BC are similar, and the “square” of similarity
scale is represented by the ratio BL : BC. In the same manner, squares on AC
and BC are similar, and the “square” of similarity scale is represented by the ratio
LC : BC. The blue and yellow triangles underline the fact that these relations
have been established due to triangulation, namely 4GAB : 4BCE : BL : BC
and 4FGB : 4DBE : BL : BC, therefore,

sq(FGAB) : sq(DBCE) :: BL : BC.

Similarily, 4AKC : 4BCE : LC : BC and 4AHK : 4BDE : LC : BC.
Therefore,

sq(AHKC) : sq(BCED) :: LC : BC.

“Adding up” these proportions, by V.24, we obtain the following proportion

sq(FGAB) + sq(AHKC) : sq(BCED) :: BC : BC.

Finally, by V.16 and V.9, the equality sq(FGAB) + sq(AHKC) = sq(BCED)
holds.

By comparing these proofs, we can reveal yet another phenomena, this time
of congnitive, rather than stricly mathematical nature. The proof of proposi-
tion I.47 is based on a partition of the square BCED into rectangles BLD and
CEL; it demonstrates that sq(FGBA) = rectangle(BLD), and sq(AHKC) =
rectangle(LEC); these equalities are easily represented on a diagram. On the
other hand, in the proof of proposition VI.31, squares FGAB and AHKC can not
be represented by any parts of the square BCED. Nevertheless, we can represent
the relationship between these squares by the formula

sq(FGAB) + sq(AHKC) = sq(BCED).

The sign + finds no diagramatic counterpart; in fact, there is no reference to
the addition in the enunciation of the proposition VI.31; it reads: figure on BC
is equal to similar, and similiraly described figures on BA, AC. Yet, the sign + is
understandable on the theoretical level, within the proportion theory, specificlly
through the proposition V.24. It reads: the first and the fifth, added together, AG,
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will also have the same ratio to the second C that the third and the sixth, DH,
has to the fourth F. That is, if AB : C :: DE : F , and BG : C :: EHF , then
AB : C :: DH : F . Since throughout the whole book V magnitudes are represented
by line segments, the equality AG = AB+BG to which the word added applies, is
represented by line segments. However, the addition of squares is not represented
by any partion of the square BCED; it can be represented but by the formula

sq(FGAB) + sq(AHKC).

6. Comparing definitions and proofs

Presented above sets of lessons offer the opportunity to indroduce metamath-
ematical techniques of comparing defintions and axiomatic backgrounds of the
proofs. Here is a sketch of what can be studied, we skip here the question how
these topics could be studied.

Approximately 400 proofs of the Pythagorean Theorem circulate on the Inter-
net (see Maor, 2007). They can all be divided into three groups due to the applied
method as follows: 1) cut-and-paste proofs, 2) proofs based on Elements, I.47, 3)
proofs based on Elements, VI.31. Most of them are of the cut-and-paste kind, since
they build on the dissection of squares into congruent triangles. Thus, they implic-
itly apply a specific notion of the equality of figures. Since courses in elementary
geometry do not include any reference to the complete theory of equality founded
on dissection, like the one developed in (Hilbert, 1970, ch. 4), the only way stu-
dents can follow along while considering these proofs is to meditate on diagrams.
Unintentionally, they imitate the 12th century Hindu dissection-proof in which the
inferential knowledge is reduced to just one word: “See” (see Maor, 2007, p. 65). It
can be shown, however, that equality founded on dissection and Euclid’s equality
of figures are two different concepts, i.e. there is a model of an Euclidean plane
with triangles equal in Euclid’s sense and not equal in terms of dissection (see
Hilbert, 1970). This claim seems to contradict the Bolyaia-Gerwien theorem that
boils down to the fact that equality based on dissection is equivalent to Euclid’s
equality of figures (in standard wording, to the ah/2 formula for the area of tri-
angle). Indeed, the Bolyaia-Gerwien theorem does not hold on non-Archimedean
planes, while Euclid’s Theory of Area is valid on (some) non-Archimedean planes,
consequently the proof of the proposition I.47 can be reconstructed on a non-
Archimedean plane3.

The proof of VI.31 builds on the proportion theory, as a result, on the Archi-
medean axiom (defnition V.4), therefore it can be completed only on (some)
Archimedean planes. In fact, definition V.4 is refered to only once in book V,

3Cf. J. Baldwin’s claim: “Euclid’s proof of Pythagoras’s theorem I.47 uses the properties of
area [...]. His second proof [...] uses the property of similar triangles [...]. In both cases Euclid
depends on the theory of proportionality (and thus implicitly on Archimedes’ axiom) to prove
the Pythagorean theorem” (Baldwin, 2018. p. 368). In section 3, we have shown that Euclid’s
Theory o Area does not refer to proportions.
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namely in the proposition V.8. Still, through the appropriate models we can
also show that Euclid’s use of defintion V.4 in the proof of V.8 is essential (see
Błaszczyk, Mrówka, 2013, pp. 176–184)4.

Proposition VI.31 is often called a generalization of I.47. George Polya, for
example, seeks to support this claim with a kind of heuristic argument. In fact,
his approach implicitly applies proposition VI.19 and in this way it depends on
the Archimedean axiom (see Polya, 1957, pp. 12–17). Although the theses of the
propositions VI.31 and I.47 could be viewed in terms of generality, the proof of
VI.31 is by no means more general than the proof of I.47.
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4All throughout his Baldwin, 2018 John Baldwin reiterates the claim that Euclid’s theory
of proportion “depends on Archimedes’ axiom”. However, he just states that book V includes
definiotn 4 rather that provide a proof to the metamathematical result that Euclid’s theory
depends on definition V.4.
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